

UI, Architecture, Algorithm, and Future

Daiki Ueno
Presented by

Input Method

Who am I?
Free software contributor

Committer of Emacs, GnuPG, GNUTLS, and GNOME

@ueno at github, ohloh

One of the core developers of IBus

Intelligent Input Bus, an input method framework
http://code.google.com/p/ibus/

Wrote surrounding-text, Dconf support, etc.

Maintainer of ibus-m17n

Today's Topics
1.Intro

What's input method and how people use it

2.UI

Common UI elements of IM

3.Architecture

What components are inside IM

4.Algorithm

Algorithms behind complex IM

5.Future

Intro

Mechanism to input native text to application

Through UI toolkits or XIM protocol

Two IM types

Character based IM
Cangjie, Hangeul, Indic, Thai, Vietnamese

Sentence based IM
PinYin, Japanese

What is input method?

Input sequence is mapped to characters

Cangjie, Hangeul, Indic, Thai, Vietnamese

Character based IM (CBIM)

ನಮಸಕರvcmdkej

7 keyboard chars are mapped to 7 Kannada chars = 1:1

Sentence based IM (SBIM)
Input sequence is mapped to sentences

PinYin, Japanese

Candidate sentences are provided as a list
The most likely sentence will be shown in front of the list

User chooses a desired sentence through some UI

zhongguoren 中国人

种果人
11 keyboard chars are treated as

a pronunciation of
Chinese sentences = 1:N ...

Summary of CBIM and SBIM
CBIM - Easy

Can be implemented with simple dictionary lookup

SBIM - Not so easy

More tasks
How to split input sequence into words

How to find most likely output sequence

How to recover from failed conversion

Some of IM are hybrid of CBIM and SBIM

Hybrid example: Japanese
Input sequence

kyouhaiitenkidesune

Japanese alphabets (Kana)

きょうはいいてんきですね

Japanese sentences (Kana + Kanji)

今日はいい天気ですね

きょうは良い天気ですね
...

Character
conversion

1:1

Sentence
conversion

1:N

Some Kana chars are
translated to Kanji (Chinese) chars

UI

Basic UI elements
Present intermediate user input, hints, and
candidates

Pre-edit text

Auxiliary text

Candidate list

Additional UI elements
Some IM implement more UI elements

Drawing pad for handwriting recognition

Character map

Architecture

IM client

Gtk/Qt immodule, XIM server

IM engine (IME)

ibus-pinyin, scim-anthy

IM panel (UI)

...

IM components

Communicate
with each other

Single process

Fcitx, uim, SCIM

Pros: lightweight, easy to add UI component

Cons: one component can crash the whole system

Multi-process

IBus

Pros: robust against crashes

Cons: high latency because of IPC

Single process or multi-process

Multi-process architecture

ibus-daemon

Chinese IME

Japanese IME

Config
Qt client

GTK+ client

Panel

ibus-daemon runs as a bus

Each component communicates
through the bus

Plugged into GUI toolkits through dynamic
modules, called IM modules

Text widgets shall call “hooks” of IM modules

Client: Hook into GUI toolkits

static gint
gtk_entry_key_press (GtkWidget *widget,
 GdkEventKey *event)
{
 ...
 if (gtk_im_context_filter_keypress (priv->im_context, event))
 {
 ...
 return TRUE;
 }
 ...

Actually implemented by IM modules

Algorithm

Recall the example
Input sequence

kyouhaiitenkidesune

Japanese alphabets (kana)

きょうはいいてんきですね

Japanese sentences (kana + kanji)

今日はいい天気ですね

きょうは良い天気ですね
...

Character
conversion

1:1

Sentence
conversion

1:N

Not so easy

Easy

Sentence conversion
Rule based approach

Pros: easy to tune to each case

Cons: need to maintain thousands of rules

Statistics based approach

Pros: maintenance cost is low

Cons: difficult to tune to corner cases

Statistics based (2-gram)
1.Split an input sequence into all possible sub

sequences

き | ょうはいいてんきですね

きょ | うはいいてんきですね

…

きょう | は | いいてんきですね

きょう | はい | いてんきですね

…

きょう | は | いい | てんきですね

N=
n(n−1)

2

Statistics based (2-gram)
2.Lookup words for each sub sequence

木 | ょうはいいてんきですね

巨 | うはいいてんきですね

…

今日 | は | いいてんきですね

今日 | 杯 | いてんきですね

…

今日 | は | 良い | てんきですね

N'=∑k=1

N
Ck

Statistics based (2-gram)
3.Construct a graph of ~N' + 2 nodes

は / はきょう / 今日 ね / ね

きょ / 巨 う / 雨

BOS EOS

Each edge is assigned transition cost
→Compute the shortest path

Transition cost
Obtained from language model

Language model construction

1.Count occurrences of words in corpus

2.Count occurrences of word pairs in corpus

3.Compute probability of each occurrence

4.Smoothing

Some free software tools are available

MITLM, Palmkit

Statistics based (2-gram)
4.Find other candidates

は / はきょう / 今日 ね / ね

きょ / 巨 う / 雨

BOS EOS

A* (A-star) search from BOS, using
cumulative cost saved on each node

Finding the most likely sentence

Compute the shortest path with Viterbi algorithm

http://en.wikipedia.org/wiki/Viterbi_algorithm

Finding the other possible sentences

Backward A* search from EOS

http://en.wikipedia.org/wiki/A*_search_algorithm

Changing word boundary

Add constraints when building the graph

Algorithms

Algorithm improvements
Use 3-gram rather than 2-gram

Accuracy will be improved

Possible, but a bit too complex

Compress language models

Use succinct data structure

Future

Challenges I
Using context information

Language detection
Switch IME automatically based on document

Predictive input
Use preceding N words to predict the next input

Similar algorithm as statistic sentence conversion

How to retrieve context information?
GTK+: surrounding-text, input purposes and hints

Challenges II
Support for restricted input environment

Mobile input
Maybe the complex SBIM algorithm is not suitable

Maybe predictive input is good enough

Approximate matching for mistyped words

Accessibility
Integrate with scanning mode

visual input with a single key

Recent development topics of IBus

Improve performance of initial startup

Switch to binary based cache

Currently it is in XML

Detect newly installed IME

Currently user needs to restart ibus-daemon

Use XInput2 raw events to utilize long press

Support GSettings in proper way

Currently it directly uses Dconf library

Hints on development
Concentrate on “plumbing” rather than UI

Desktop UI trends are rapidly changing

Make the core algorithm reusable

Turn it into a library
libpinyin, libhangul, m17n-lib, libskk, libchewing

Allow access from various programming languages

Be flexible about IM framework mushrooms
IBus, Fcitx, uim, SCIM, HIME, ...

Three aspects of modern IM are presented

UI elements of IM

Single process vs multi-process

Rule based or statistic based algorithm

There are still rooms for improvement

Summary

Questions?

ueno@fedoraproject.org
Contact:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

