

Daiki Ueno, Anish Patil
Presented by

Next Generation Input Methods

Today's Topics
Japanese input basics ;-)

The theory and algorithm behind it

Next generation features

Architecture

Japanese input
basics

Japanese Typewriter SH-280, CC-BY 3.0, by miya

Japanese input in one slide

ASCII sequence

kyouhaiitenkidesune

Japanese alphabets (Kana)

きょうはいいてんきですね

Japanese sentences (Kana + Kanji)

今日はいい天気ですね

きょうは良い天気ですね
...

Character
conversion

1:1

Sentence
conversion

1:N

Note: There's no single solution!

How does it work?
1.Split input sequence into segments

2.Assign Chinese characters to segments

3.Find the most likely output

1. Split into segments

き | ょうはいいてんきですね

きょ | うはいいてんきですね

…

きょう | は | いいてんきですね

きょう | はい | いてんきですね

…

きょう | は | いい | てんきですね

N=
n(n−1)

2

2. Assign Chinese characters

木 | ょうはいいてんきですね

巨 | うはいいてんきですね

…

今日 | は | いいてんきですね

今日 | 杯 | いてんきですね

…

今日 | は | 良い | てんきですね

N '=∑k=1

N
Ck

3. Find the most likely output

は / はきょう / 今日 ね / ね

きょ / 巨 う / 雨

BOS EOS

Transition cost

Now it turned into the shortest path problem,
though we need a language model to compute costs

Language models
Assign probability of sentence or words

1-gram: only one word

2-gram: 2 consecutive words

3-gram: 3 consecutive words

Generated from corpus

Considering features of each word
Notation, part of speech, length, ...

Implementation: libkkc
Language model

3-gram language model generated from:
Wikipedia (Japanese): 100,000 sentences

Yahoo! Chiebukuro (Q&A site): 20,000 sentences

Only using notation of each word

> 90% accuracy

To recover sentences from newspaper articles

Next generation
features

Problems
Our language is changing

Human beings are lazy

Our language is changing
Languages reflect the current events

あべ (pronunciation: be) is a popular Japanese ə
surname, written as:
阿部 , 安倍 , 安部 , or 阿倍

When Mr. 安倍 was appointed as the Japanese
prime minister
あべしゅしょう should be安部首相 , not 阿部首相

 あべせいけん should be 安部政権 , not 阿部政権

Our language is changing
Misuse sometimes becomes formal

×怒り心頭に達する =たっする
○怒り心頭に発する ＝はっする

Solutions
Use on-line language model

Privacy issues

Release language model data frequently

Requires bandwidth

Interpolate language model with updates

May sacrifice accuracy

Human beings are lazy
Cumbersome to type the whole sentence

Can't remember the meaning of a word

Can't remember the pronunciation of a character

We have thousands of characters!

Solutions
Predictive input

Handwriting input

Predictive input
A system that suggest the next possible word
from the previously input words

Pros

Users don't need to type the whole sentence

More information could be presented to user
Thesaurus, derivation of word, etc.

Cons

User distractions

Privacy issues

Handwriting input
Find a character by handwriting shape, drawn
using a pointing device

Pros

No need to bring a dictionary

Cons

Accuracy

Typing speed

Architecture

Architecture
No, I'm not proposing an IBus competitor?

Is the current IBus architecture ideal?

Traditional IM architecture

Pinyin engine

Hangul engine

Cangjie engine

Kana Kanji engine

Language
data

GTK immodule

Panel UI

XIM server

Complex
engine

Simple
engine

Custom protocol

SCIM, etc.

Traditional IM architecture

Pros

Fast response

Cons

Engines can make the whole system unusable
Some engines are very complex and sometimes become
irresponsive on high resource usage

IBus architecture
Panel UI

e.g. gnome-shell

ibus-daemon

Pinyin engine

Hangul engine

Cangjie engine

Kana Kanji engine

GTK immodule

D-Bus protocol

IBus architecture
Pros

Crash resistant

Stable frontend (panel) API, based on D-Bus

Cons

Slow response

Complicated implementation

Implementation issues
The backend API is not fully asynchronous
nor cancellable

Process management glitches

No mechanism to recover crashed engine

Newly installed engines are not recognized until
ibus-daemon restarts

Small number of test cases

~30% code coverage

Objectives
For the next generation features, the
architecture should carefully handle

Privacy, on-line updates, UI for predictive input, ...

Make complex engines more like an ordinary
GNOME application

Could be registered through .desktop file

Take advantage of sandboxing

While providing lightweight access to simple
engines

Proposed architecture

IM server library

IM client library

GTK immodule Kana Kanji engine

IM server library

gnome-shell

Complex engine process

IM backend library

Kana Kanji engine

Simple engine process

Hangul engine

Cangjie engine
IM backend

library

Proposed architecture
A client and engine communicate through a
peer-to-peer connection

An engine and panel communicate through the
session bus

A single process can accommodate multiple
engines (e.g. Cangjie and Hangul)

Libraries mediate those connections

Libraries
IM backend library

Exports engine service(s)

IM client library

Communicates with the backend library

Responsible for input events
Key press, focus, ...

Libraries (cont'd)
IM server library

Brokers connection between engine and client

Responsible for management events
IM menu, candidate list, handwriting, …

Provides IBus compatible front-end API

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

