
2019-08-23 Thessaloniki

Desktop secrets management for the future

Daiki Ueno

Desktop secrets management for the future 2

Agenda

Objective
Solutions: past, present, and future
Discussion

Desktop secrets management for the future 3

Objective

Allow applications to store user credentials in a uniform way

User credentials = some attributes + secret
Sign-in forms on websites
Access tokens for web services
Wi-Fi passwords
Protection passwords for SSH keys

Desktop secrets management for the future 4

Solutions

Desktop secrets management for the future 5

Past: ~/.netrc

Invented for FTP clients, adopted by other applications

User credentials are in plain text with matching attributes

machine foo login ueno password baz
machine bar port 587 login ueno password baz
default login anonymous password user@site

Potential attackers
Other users on the system

Protection
File permissions

Desktop secrets management for the future 6

Present: gnome-keyring and libsecret

The central daemon manages all the user credentials

Applications are supposed to use a client library to access

Potential attackers
Other users on the system
Active attackers who gain access to the disk

Protection
File permissions
Encryption

Desktop secrets management for the future 7

Present: gnome-keyring and libsecret

gnome-keyring libsecret

D-Bus

application
~/.local/share/keyrings

Secret Service API

application

application

Desktop secrets management for the future 8

Future: is the current technology still relevant?

Per-process isolation
Keyring format

Desktop secrets management for the future 9

Per-process isolation

gnome-keyring doesn’t provide isolation between processes

One app can retrieve the other app’s credentials

flatpak makes installing third party apps easier than ever

flatpak apps need a hole to access the Secret Service API
/* Secret Service API */
"--talk-name=org.freedesktop.secrets"

Potential attackers
Other users on the system
Active attackers who gain access to the disk
Malicious third party apps

Desktop secrets management for the future 10

Can we close the hole?

Desktop secrets management for the future 11

Can we close the hole?

Solution: Let’s store credentials in application side

Analogous to GSettings: “Settings, in a sandbox world”
Master secrets are still needed for encryption

Approaches

Kernel keyring upcall
Portal and FD passing

https://blogs.gnome.org/mclasen/2019/07/12/settings-in-a-sandbox-world/

Desktop secrets management for the future 12

Retrieving master secret: kernel keyring upcall

1. Look up kernel keyring for master secret
2. If not found, access gnome-keyring through upcall
3. Cache the retrieved secret in kernel keyring

Desktop secrets management for the future 13

Retrieving master secret: kernel keyring upcall

callout
executable

gnome-keyring

user-space callout

~/.var/app/$APP_ID

sandbox

libsecret

cache

Linux kernel

flatpak app

Figure 1: Kernel keyring upcall

Desktop secrets management for the future 14

Retrieving master secret: kernel keyring upcall

Pros
Master passwords are cached securely in the kernel
No need for wire encryption

Cons
The callout program lacks app information
Impossible to cancel prompting if keyring is locked
Linux only

Desktop secrets management for the future 15

Retrieving master secret: portal and FD passing

1. Ask flatpak portal for master secret
2. Portal redirects the request to gnome-keyring
3. Secrets are transported through FD passing

Desktop secrets management for the future 16

Retrieving master secret: portal and FD passing

portal
frontend

portal
backend

gnome-keyring

2.map PID to app_id
through /proc

3.write to FD

D-Bus

1. request master secret,
with FD passing

flatpak app
~/.var/app/$APP_ID

sandbox

libsecret

Figure 2: Portal and FD passing

Desktop secrets management for the future 17

Retrieving master secret: portal and FD passing

Pros
No need for wire encryption
Ability to cancel prompting by application
Portable

Cons
Applications have more responsibility

Desktop secrets management for the future 18

Future: is the current technology still relevant?

Per-process isolation
Keyring format

Desktop secrets management for the future 19

Keyring format

Custom binary format
Items are encrypted in a
single chunk
SHA-256 for key
derivation
AES-128-CBC for
encryption
MD5 for hashing
attributes

header
metadata
hashed
attributes
encrypted
items

label
secret

attributes

Keyring
Items

decrypt

Desktop secrets management for the future 20

Keyring format

$ strings ~/.local/share/keyrings/login.keyring
GnomeKeyring
Login
host
5f4a67b0504e75a1b659441bfdddd948

keyring
42a31547b300ad0c1123774ec91f1a9b

unique
8ae8c34a73360d83a5be7bbe68e930cd

$ echo -n ssh-store:/home/dueno/.ssh/sakura_rsa | md5sum
8ae8c34a73360d83a5be7bbe68e930cd -

Desktop secrets management for the future 21

Proposed keyring format

GVariant serialization
format
Items are encrypted
individually
PBKDF2
AES-256-CBC
MAC instead of simple
hashing

header
keyed hash
of attributes
encrypted
items

label
secret

attributes

Keyring
Items

decrypt

Desktop secrets management for the future 22

Current status

Demo

user credentials isolation under flatpak

4 open merge requests

libsecret: Add local-storage backend
libsecret: New interface to represent storage backend
xdg-desktop-portal: Add a secret portal
gnome-keyring: Implement secret portal backend

https://asciinema.org/a/9gAd1DMQuucd3brCGp3SynBtj
https://gitlab.gnome.org/GNOME/libsecret/merge_requests/6
https://gitlab.gnome.org/GNOME/libsecret/merge_requests/34
https://github.com/flatpak/xdg-desktop-portal/pull/359
https://gitlab.gnome.org/GNOME/gnome-keyring/merge_requests/18

Desktop secrets management for the future 23

Discussion

Desktop secrets management for the future 24

Discussion

What happens if app ID is forged after reinstall?

Remove app’s keyring file on uninstall, or
Ensure all apps are digitally signed

Can we close the hole entirely?

Anonymize the host access using public key crypto
TLS exporters, Clevis / Tang
Need a physical boundary between the sandbox and host

Desktop secrets management for the future 25

Discussion

How about backup and mobility of secrets?

Not feasible to store arbitrary credentials on HSM
Only store a key pair used to encrypt master secrets
Share the secrets on remote machine, as an encrypted file

Desktop secrets management for the future 26

Thanks!

Questions, comments or suggestions?

Image credit: view from a hole by spDuchamp, CC-BY-SA 2.0

https://flic.kr/p/4evCaN

	Solutions
	Discussion

