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Objective

Allow applications to store user credentials in a uniform way

User credentials = some attributes + secret
Sign-in forms on websites
Access tokens for web services
Wi-Fi passwords
Protection passwords for SSH keys
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Solutions
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Past: ~/.netrc

Invented for FTP clients, adopted by other applications

User credentials are in plain text with matching attributes

machine foo login ueno password baz
machine bar port 587 login ueno password baz
default login anonymous password user@site

Potential attackers
Other users on the system

Protection
File permissions
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Present: gnome-keyring and libsecret

The central daemon manages all the user credentials

Applications are supposed to use a client library to access

Potential attackers
Other users on the system
Active attackers who gain access to the disk

Protection
File permissions
Encryption
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Present: gnome-keyring and libsecret

gnome-keyring libsecret

D-Bus

application
~/.local/share/keyrings

Secret Service API

application

application
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Future: is the current technology still relevant?

Per-process isolation
Keyring format
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Per-process isolation

gnome-keyring doesn’t provide isolation between processes

One app can retrieve the other app’s credentials

flatpak makes installing third party apps easier than ever

flatpak apps need a hole to access the Secret Service API
/* Secret Service API */
"--talk-name=org.freedesktop.secrets"

Potential attackers
Other users on the system
Active attackers who gain access to the disk
Malicious third party apps
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Can we close the hole?
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Can we close the hole?

Solution: Let’s store credentials in application side

Analogous to GSettings: “Settings, in a sandbox world”
Master secrets are still needed for encryption

Approaches

Kernel keyring upcall
Portal and FD passing

https://blogs.gnome.org/mclasen/2019/07/12/settings-in-a-sandbox-world/
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Retrieving master secret: kernel keyring upcall

1. Look up kernel keyring for master secret
2. If not found, access gnome-keyring through upcall
3. Cache the retrieved secret in kernel keyring
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Retrieving master secret: kernel keyring upcall

callout
executable

gnome-keyring

user-space callout

~/.var/app/$APP_ID

sandbox

libsecret

cache

Linux kernel

flatpak app

Figure 1: Kernel keyring upcall
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Retrieving master secret: kernel keyring upcall

Pros
Master passwords are cached securely in the kernel
No need for wire encryption

Cons
The callout program lacks app information
Impossible to cancel prompting if keyring is locked
Linux only
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Retrieving master secret: portal and FD passing

1. Ask flatpak portal for master secret
2. Portal redirects the request to gnome-keyring
3. Secrets are transported through FD passing
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Retrieving master secret: portal and FD passing

portal
frontend

portal
backend

gnome-keyring

2.map PID to app_id 
through /proc

3.write to FD

D-Bus

1. request master secret,
with FD passing

flatpak app
~/.var/app/$APP_ID

sandbox

libsecret

Figure 2: Portal and FD passing
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Retrieving master secret: portal and FD passing

Pros
No need for wire encryption
Ability to cancel prompting by application
Portable

Cons
Applications have more responsibility
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Future: is the current technology still relevant?

Per-process isolation
Keyring format
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Keyring format

Custom binary format
Items are encrypted in a
single chunk
SHA-256 for key
derivation
AES-128-CBC for
encryption
MD5 for hashing
attributes

header
metadata
hashed
attributes
encrypted
items

label
secret

attributes

Keyring
Items

decrypt
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Keyring format

$ strings ~/.local/share/keyrings/login.keyring
GnomeKeyring
Login
host
5f4a67b0504e75a1b659441bfdddd948

keyring
42a31547b300ad0c1123774ec91f1a9b

unique
8ae8c34a73360d83a5be7bbe68e930cd

$ echo -n ssh-store:/home/dueno/.ssh/sakura_rsa | md5sum
8ae8c34a73360d83a5be7bbe68e930cd -
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Proposed keyring format

GVariant serialization
format
Items are encrypted
individually
PBKDF2
AES-256-CBC
MAC instead of simple
hashing

header
keyed hash
of attributes
encrypted
items

label
secret

attributes

Keyring
Items

decrypt
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Current status

Demo

user credentials isolation under flatpak

4 open merge requests

libsecret: Add local-storage backend
libsecret: New interface to represent storage backend
xdg-desktop-portal: Add a secret portal
gnome-keyring: Implement secret portal backend

https://asciinema.org/a/9gAd1DMQuucd3brCGp3SynBtj
https://gitlab.gnome.org/GNOME/libsecret/merge_requests/6
https://gitlab.gnome.org/GNOME/libsecret/merge_requests/34
https://github.com/flatpak/xdg-desktop-portal/pull/359
https://gitlab.gnome.org/GNOME/gnome-keyring/merge_requests/18
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Discussion
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Discussion

What happens if app ID is forged after reinstall?

Remove app’s keyring file on uninstall, or
Ensure all apps are digitally signed

Can we close the hole entirely?

Anonymize the host access using public key crypto
TLS exporters, Clevis / Tang
Need a physical boundary between the sandbox and host
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Discussion

How about backup and mobility of secrets?

Not feasible to store arbitrary credentials on HSM
Only store a key pair used to encrypt master secrets
Share the secrets on remote machine, as an encrypted file
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Thanks!

Questions, comments or suggestions?

Image credit: view from a hole by spDuchamp, CC-BY-SA 2.0

https://flic.kr/p/4evCaN
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